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OBJECTIVES

(1) To study the fundamental security limitations of covert communication systems that embed secret data in empirical
cover objects, such as digital imagery.

(2) Derive performance bounds of steganographic schemes that embed secret messages by minimizing a distortion
function, construct simulators of optimal (bound-reaching) schemes, and design algorithms for practical near-
optimal schemes.

(3) Investigate the possibility to develop high-capacity steganographic schemes undetectable by a given steganalysis
detector and formulate the implications for improving detection of steganography.
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EXECUTIVE SUMMARY

Steganography is a relatively new mode of communication that is far less developed and understood in comparison
to other research fields that offer privacy and security, such as cryptography. In particular, despite its fundamental
importance, the very basic question of how big a payload it is secure to embed in a given cover object to prevent an
adversary from detecting the presence of a secret message, is still open. The first result in this direction appeared
in [61, 88, 89]. Through a series of articles published in 2004-2008, it has been established that steganographic capacity
of perfectly secure stegosystems grows linearly with the number of cover elements (pixels) - secure steganography has a
positive rate. In practice, however, neither the adversary (Warden) nor the steganographer has perfect knowledge of the
cover source and thus it is unlikely that perfectly secure stegosystems for empirical covers, such as digital media, will
ever be constructed. This justifies the first topic on which the PI focused — the study of secure capacity of imperfect
stegosystems. ‘

In 2006 and 2007, theoretical results appeared concerning the paradigm of batch steganography [50, 51| (embedding by
dividing payload among multiple covers to minimize statistical detectability). These results, supported by experiments
with blind steganalyzers, pointed to an emerging paradigm: whether steganography is performed in a large batch of cover
objects or in a single large object, the size of the secure payload grows only sub-linearly. In particular, the secure payload
appeared to be proportional to the square root of the number of pixels in the cover image. This so-called Square-Root Law
of Steganography is the first principal achievement reported here. In Section 1, it is formally established for imperfect
stegosystems that hide messages in covers modeled as a stationary Markov chain and when the embedding changes are
mutually independent. An important new part of this contribution, explained in Section (2), is a complete characterization
of perfectly-secure cover sources with respect to a given embedding operation. The square root law has been confirmed
experimentally on real imagery and several different embedding and steganalysis methods in Section 3. Among other
contributions, it has been established that secure payload of imperfect steganographic systems is completely described
using the so-called ot rate that depends on the steganographic Fisher information, which forms a security descriptor
equivalent to the Kullback-Leibler divergence (Section 2). The Fisher information can be used for optimizing the design
of steganographic systems, for benchmarking, and comparison of covert communications schemes. r

Having established the fundamental limitations of covert communication in empirical (incognizable) covers, the PI then
directed her effort towards a general framework within which steganographic schemes can be built in practice (Sections 5-
6). By abandoning the concept of preserving the cover distribution (as the distribution is incognizable anyway), the
steganography is instead casted as a source coding with fidelity constraint. The so-called minimal embedding impact
steganography is formulated using the concept of distortion that is fundamentally tied to statistical detectability. The
PI resolved the problem of embedding while minimizing an essentially arbitrary distortion function by formulating the
embedding problem within statistical physics. The resulting “Gibbs construction” (Section 6) is an elegant framework
within which one can study, design, and optimize steganographic schemes. Syndrome-trellis codes were proposed as a
general approach to practical embedding. Finally, the PI managed to tie distortion to statistical detectability by converting
the problem of minimizing detection to a parameter optimization problem [24]. Thus, the developed framework provides
an enclosed and complete theoretical basis for further development of steganography in empirical covers.

This report makes use of the Iverson bracket [I] defined to be 1 if the logical expression I is true and zero otherwise.
The binary entropy function h(x) = —zlogx — (1 — z)log(1 — x) is expressed in bits.
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1. THE SQUARE ROOT LAW OF SECURE STEGANOGRAPHIC PAYLOAD

In steganography, the sender communicates with the receiver by hiding her messages inside innocuous looking (cover)
objects. Most practical steganographic methods embed messages by slightly modifying individual elements of the cover,
obtaining thus the modified stego object that conveys the hidden message. The goal here is to make the stego objects
statistically indistinguishable from covers — a passive warden, who is merely inspecting the traffic, cannot construct a
detector of stego objects that would work better than an algorithm that makes random guesses. The assumption is
that, up to a secret shared key, the warden is familiar with all details of the steganographic scheme: this is the so-called
Kerckhoffs’ principle, which is also interpreted to mean that the warden has complete knowledge of the probabilistic
distribution of cover objects.

Statistical detectability of embedding changes depends on their character and extent. Intuitively, it should be possible
to send short messages with lower risk of being detected than long messages. From a practical point of view, the sender
needs to know how long a message she can embed for a chosen risk — she needs to know the steganographic capacity of
the stegosystem. Unfortunately, determining the steganographic capacity analytically for real digital media objects, such
as digital images, is very difficult even for the simplest steganographic paradigms, such as LSB (Least Significant Bit)
embedding. The reason is the lack of accurate statistical models.

One may intuitively expect the steganographic capacity to be linear in the size of the cover object by referring to a
similar result for capacity of noisy communication channels. This is, indeed, valid if the stegosystem is perfectly secure,
since there is no possible detector [61, 12]. In view of the absence of provably secure steganographic methods for real
digital media, it makes sense to investigate steganographic capacity of imperfect embedding methods for which detectors
exist and inquire about the largest payload that can be embedded using their e-secure versions in the sense of Cachin [9].

The fact that steganographic capacity is most likely sublinear was already suspected by Anderson (1] in 1996:

“Thanks to the Central Limit Theorem, the more covertext one gives the Warden, the better he will be
able to estimate its statistics, and so the smaller the rate at which [the steganographer] will be able to
tweak bits safely. The rate might even tend to zero..”

The analysis of batch steganography and pooled steganalysis by Ker [51] tells us that steganographic capacity of imperfect
stegosystems only grows as the square root of the number of communicated covers. This result could be interpreted as the
square root capacity law for a single image by dividing it into smaller blocks. The capacity result, however, was obtained
with the assumption that the individual images (blocks) form a sequence of independent random variables, which is clearly
false not only for images but also other digital media files. The main contribution reported in this section is to establish
the same law for the simplest form of dependence that enables analytical reasoning — it will be assumed that individual
elements of the cover (e.g., pixels) follow stationary Markov chain.

1.1. Basic assumptions. This section introduces notation and three basic assumptions under which the SRL (Square-
Root Law) is proved. The first assumption concerns the impact of embedding. It is postulated that the stego object is
obtained by applying a mutually independent embedding operation to each cover element. This type of embedding can
be found in majority of practical embedding methods (see, e.g., [37] and the references therein). The second assumption
concerns the model of covers. The individual cover elements are required to form a first-order Markov chain because
this model is analytically tractable while allowing study of more realistic cover sources with memory. Finally, the third
assumption essentially states that the steganographic method is not perfectly secure.

Throughout the report, A = (a;;) denotes a matrix with elements a,;, calligraphic font (X’) to denote sets, and capital
letters (X, Y) to denote random variables, both vector and scalar. If y is a vector with components y = (yi,...,¥n), ¥k
denotes the subsequence y} = (yk,...,w). fY = (Y},...,Y,) is a random vector with underlying probability distribution
P, then P(Y}! = y.) denotes the marginal probability P(Yx = v, Yes1 = Yas1,..., Y1 = ).

An n-element cover source will be represented using a random variable X7' £ (X,,...,X,) distributed according to
some general distribution P(™) over X", X £ {1,...,N}. A specific cover object is a realization of X7 and will be
denoted with the corresponding lower case letter z7 £ (z1,...,2n) € X™. A stegosystem, with covers of fixed size
n, is a triple S, = (X}, @™, ¥(?)) consisting of the random variable describing the cover source, embedding mapping
@™, and extraction mapping ¥. The embedding mapping & applied to X induces another random variable
Y £ (Y,,...,Y,) with probability distribution Qg‘) over X", Specific realizations of Y;* are called stego objects and will
be denoted y £ (y1,...,yn). Here, 8 > 0 is a scalar parameter of embedding whose meaning will be explained shortly.
The specific details of the embedding (and extraction) mappings are immaterial for this study. In particular, one only
needs to postulate the probabilistic impact of embedding.
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LSB embedding: +1 embedding: F5:

B=1-3 M=0 E=3i B=1

FIGURE 1.1. Examples of several embedding methods in the form of a functional matrix B.

Assumption 1: [Mutually independent embedding] The embedding algorithm visits every cover element X}, and,
independently of all other elements, modifies it to a corresponding element of the stego object Yi. with probability

(1.1) Qﬁ(Yk = Jl)‘k = 1,) 2 bi,j(B) i Bctt ].
Bei otherwise,
for some constants (c; ;) with ¢;; > 0 for © # j. Note that because 3° .. bi;j = 1, one must have ¢;; = ~ 3. ; ¢i5 for

each i € X. The matrix (¢; ;) reflects the inner workings of the embedding algorithm, while the parameter 3 captures
the eztent of embedding changes. It will be useful to think of 8 as the relative number of changes (change rate) or some
function of the change rate. Also note that one can find sufficiently small 8y, such that b; ;(5) > 0 for 8 € [0, 5] and all
i€ X.

Because the matrix Bs £ (b; j(8)) does not depend on k € {1,...,n} or the history of embedding changes, one can say
that the stego object is obtained from the cover by applying to each cover element a Mutually Independent embedding

. operation (one speaks of MI embedding). The independence of embedding modifications implies that the conditional
probability of stego object given the cover object can be factorized, i.e., le)(Y{‘IX P =TI, @s(Yil X,).

Many embedding algorithms across different domains use MI embedding. Representative examples are LSB embedding,
+1 embedding, stochastic modulation, Jsteg, MMx, and various versions of the F5 algorithm [29]. Examples of the matrix
By for three selected embedding methods are shown in Figure 1.1.

Next, an assumption on the cover source is formulated.

Assumption 2: [Markov cover source] It is assumed that the cover source X7 is a first-order stationary Markov
Chain over X, which will often be abbreviated as simply Markov Chain (MC). This source is completely described
by its stochastic transition probability matrix A £ (a;;) € RV*V, q;; = Pr(Xy = j|Xk-1 = i), and by the initial
distribution Pr(X;). The probability distribution induced by the MC source generating n-element cover objects satisfies
PO(XP = z}) = PO-O(X]! = 27" Va,, ,.,, where P(1)(X,) is the initial distribution. Furthermore, it is assumed
that the transition probability matrix of the cover source satisfies a;; > § > 0, for some § and thus the MC is irreducible.
The stationary distribution of the MC source is a vector # £ (my,...,7n) satisfying #A = 7. In this report, it will
always be assumed that the initial distribution P()(X;) = =, which implies P"")(X:) = = for every n and k. This
assumption simplifies the analysis without loss of generality because the marginal probabilities P(™)(X}) converge to =
with exponential rate w.r.t. k (see Doob [17], equation (2.2) on page 173). In other words, MCs are “forgetting” their
initial distribution with exponential rate.

Under the above assumption and the class of MI embedding, the source of stego objects no longer exhibits the Markov
property and forms a Hidden Markov Chain (HMC) instead [79]. The HMC model is described by its hidden states (cover
elements) and output transition probabilities (MI embedding). Hidden states are described by the cover MC and the
output probability transition matrix B is taken from the definition of MI embedding.

Unless stated otherwise, in the rest of this report Qg’) denotes the probability measure induced by the HMC source
embedded with parameter S into n-element MC cover objects. By the stationarity of the MC source, the marginal
probabilities P (X)) = P (X?) and Q‘(s")(Yk"“) = Qg')(Yf) for all k. Sometimes the number of elements, n, will
be omitted and P and Qg will denote the probability distribution over cover and stego objects, respectively.

The third assumption concerns the entire stegosystem S,. Because it is known [61, 12] that steganographic capacity of
perfectly secure stegosystems is linear in n, the SRL can only apply to imperfect stegosystems.

| R N £ S
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Assumption 3: [FI condition] It is assumed that the stegosystem S, = (X[, &™) w()) is not perfectly secure in
the sense of Cachin [9] (the KL divergence DKL(P(")IIQ(;)) > 0). It is shown in Section (2), that for the special case of
Markov cover sources XJ* and MI embedding (™), this assumption can be equivalently stated in two different forms:

(1) The pair (P(z),Q‘(Sz)) does not satisfy so called Fisher Information condition,
d

(1.2) Vy? € X2 (P(Z)(Xf=yf)>o) - (dﬂ

QP W50 =0)-
(2) There exists a pair of states (%, j) such that

(1.3) P(X? = (i,5)) # Qa(Y{ = (1,5)) for all 8>0.

For the sake of continuity, the PI only provides a few brief arguments. First of all, perfectly secure stegosystems must
satisfy (1.2) because the Fisher information
d 2 2 :
(d—ﬁ‘Qg (yl)lﬁzo

appears as a coefficient in front of 52 in the Taylor expansion of KL divergence DKL(P<2)|iQf92)) w.r.t. 8 and thus

1(0) = Ep

-fEQf:)(y?H o TMUSE be zero whenever P(®)(y}) > 0. The opposite implication (zero Fisher information implies zero KL
divergence) is not valid in general but holds for MI embedding as shown in Section (2). The second condition follows from
the fact that second-order marginal statistics fully describe the first~order MC process and thus if (1.3) does not hold,
then both cover and stego distributions are the same for all n (the stegosystem is perfectly secure).

Finally, it should be stressed that Assumptions 1-3 are not overly restrictive and will likely be satisfied for all practical
steganographic schemes in some appropriate representation of the cover. For example, in digital images it is unlikely that
the distribution of each pixel depends only on its neighbor, but the dependency is likely to be spatially-limited. Then the
image can be modeled as a Markov chain made up of overlapping pixel groups. Furthermore, if a stegosystem preserves
the first-order statistics of a cover source, it is likely to be detectable by considering higher-order dependencies: the
apparently-perfect stegosystem becomes imperfect when the cover is represented by pairs or groups of pixels, coefficients,
or some other derived quantities.

1.2. The square root law of steganographic capacity. This section contains the formulation and the proof of the
main result, which states that the steganographic capacity of imperfect stegosystems with Markov covers and mutually
independent embedding operation only grows with the square root of the number of cover elements. This finding has some
fundamental implications in steganography and steganalysis. Probably the most remarkable one is that steganographic
capacity exhibits quite different properties when compared with capacity of noisy channels or lossless compression. For
example, while a mismatch in source model decreases the compression gain by a constant (the KL divergence between the
source model and true source distribution), a cover model mismatch in steganography leads to vanishing capacity.

The steganographer is at risk (w.r.t. some fixed tuple (Pg,, Pyp), with 0 < Pp, < 1 and 0 < Py, < 1 - Pg,) if
the warden has a detector with probability of false alarms and missed detection Ppys,Pyp satisfying Pra < Ppy and
Pup < Pyyp.

Theorem 1: [The square root law of steganography for Markov covers| For a sequence of stegosystems (S,)2%.,
satisfying Assumptions 1-3, the following holds:

(1) If the sequence of embedding parameters B(n) increases faster than 1/y/n in the sense that lim,_,o 1%%'2; =00,
then, for sufficiently large n, the Steganographer is at risk for arbitrary tuple (Pp,, Pyp).
(2) If B(n) increases slower than 1/\/n, lim,_, o 1—/(:'}'2; =0, then the stegosystem can be made c-secure for any e > 0
for sufficiently large n. This implies that the Steganographer is not at risk, for any tuple (Pp,, Py,p)-
(3) Finally, if B(n) grows asymptotically as fast as 1/v/n, limn 00 % = ¢ for some 0 < € < 00, then the stegosystem
is asymptotically Ce?-secure for some constant C.
Proof: Each part of the theorem is proved separately. From the Kerckhoffs’ principle, the warden knows the distribution
of cover objects P = Q{".

Part 1 [Steganographer at risk] Here, one needs to prove that the Steganographer is at risk w.r.t. any (P34, Py;p) for
all sufficiently large n. This means that a sequence of detectors, Dy, needs to be constructed for the following composite
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binary hypothesis testing problem
Ho . B == ()
H1 5 B >0

based on observing one stego object (one realization of a random sequence with distribution Qfg,")). The error probabilities

of these detectors are required to satisfy Ppa < Pp, and Pyp < Py, for all sufficiently large n. The test statistic for
each detector D,, is described next.

Equation (1.3) in Assumption 3 guarantees the existence of pair of states (i, j) such that P(X? = (i, 7)) # Qs(Y? =
(i,7)) for all 8 > 0. Thus, the test statistic vg , for detector D, is defined as

(14) o = V| = halivf) = P(XE = (,1))],

where ;l—lh,g[i, j] is the relative count of the number of consecutive pairs (i,7) in an n-element stego object embedded
using parameter 3 (In terms of indicator functions', Agli, j] = Y p=1 Ly, =iy, =s)). Note that due to stationarity of the
cover source, E [;%fhﬂ[i,j]] = Qp(Y? = (i, 7)) for all 8.

The following is proved for the difference between the means of v ,, under both hypotheses:
(1.5) Jim Elvgn] — E[vo,n] = oo when v/nf8 — oo.

Suppose, for a contradiction, that there exists K’ > 0, and a<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>